The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials

نویسندگان

  • Bo Liu
  • Chaojun Tang
  • Jing Chen
  • Zhendong Yan
  • Mingwei Zhu
  • Yongxing Sui
  • Huang Tang
چکیده

We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical nature of volume plasmon polaritons in hyperbolic metamaterials.

We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton excitations in the individual metal layers.

متن کامل

Magnetic levitation of metamaterial bodies enhanced with magnetostatic surface resonances

We propose that macroscopic objects built from negative-permeability metamaterials may experience resonantly enhanced magnetic force in low-frequency magnetic fields. Resonant enhancement of the timeaveraged force originates from magnetostatic surface resonances (MSRs), which are analogous to the electrostatic resonances of negative-permittivity particles, well known as surface plasmon resonanc...

متن کامل

Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons

A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known as a polariton. Such a state is the result of the mixing of a photon with the excitation of a material. The most discussed types of polaritons are phonon polaritons, exciton polaritons, and surface-plasmon polaritons. Recently, it was shown that, in microwaves, strong magnon-photon ...

متن کامل

Experimental demonstration of surface and bulk plasmon polaritons in hypergratings

Hyperbolic metamaterials (HMMs) represent a novel class of fascinating anisotropic plasmonic materials, supporting highly confined bulk plasmon polaritons in addition to the surface plasmon polaritons. However, it is very challenging to tailor and excite those modes at optical frequencies using prism coupling technique because of the intrinsic difficulties to engineer non-traditional optical pr...

متن کامل

Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings

The collective oscillation of the massless electrons in graphene ribbons can interact with photons to create graphene plasmon polaritons. The resonance-induced absorption is critical in signal detection and energy harvesting applications. However, because of their atomic thickness, high absorptance is difficult to achieve with graphene ribbons alone. In this work, a hybrid plasmonic system comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017